
Pole-Like Object Detection and Classification from Urban Point Clouds

Jing Huang1 and Suya You2

Abstract— This paper focuses on detecting and classifying
pole-like objects from point clouds obtained in urban areas. To
achieve our goal, we propose a system consisting of three stages:
localization, segmentation and classification. The localization
algorithm based on slicing, clustering, pole seed generation
and bucket augmentation takes advantage of the unique char-
acteristics of pole-like objects and avoids heavy computation
on the feature of every point in traditional methods. Then,
the bucket-shaped neighborhood of the segments is integrated
and trimmed with region growing algorithms, reducing the
noises within candidate’s neighborhood. Finally, we introduce
a representation of six attributes based on the height and
five point classes closely related to the pole categories and
apply SVM to classify the candidate objects into 4 categories,
including 3 pole categories light, utility pole and sign, and
the non-pole category. The performance of our method is
demonstrated through comparison with previous works on a
large-scale urban dataset.

I. INTRODUCTION

There are several categories of objects in a typical urban
scene, including buildings, cars, trees and poles. In this paper,
we focus on detection of pole-like objects, including utility
poles, street lights, traffic lights, road signs, flag poles and
parking meters. With the correctly identified instances, there
can be many potential applications such as navigation for
robots, autonomous driving and urban modeling.

Early works use images or videos to detect pole-like
objects [1]. As 3D data become popular nowadays, the ad-
vantage that 3D data can avoid problems such as illumination
and background confusion in 2D has been realized. On the
other hand, the fact that 3D sensed datasets contain a large
number of points calls for the efficiency of algorithms. While
we can classify and extract all linear clusters from arbitrary
directions (see Sec. VI-A), most pole-like objects are in the
upright direction, even if the terrain is steep, due to safety
and usability requirements. In case the data come without a
regular well-aligned coordinate system, we can either first
roughly fit the ground and get the upright direction, or
manually select the z-direction. After that, we are able to
apply a fast vertical bounding-box-based method to extract
all possible locations of pole-like objects.

On the other hand, simple clustering methods based on
spatial proximity are not feasible since the ground always
connect everything together. Also, in large-scale datasets
such as urban scenes, the majority of data belong to large

1Jing Huang is with the Department of Computer Science,
University of Southern California, Los Angeles, CA 90089, USA
huang10@usc.edu

2Suya You is with Faculty of the Department of Computer Sci-
ence, University of Southern California, Los Angeles, CA 90089, USA
suya@usc.edu

scale planes including ground and building facade, which
is not the focus of pole detection. Therefore, most previous
works tend to use a plane-fitting technique to remove the
ground. If the ground is removed perfectly, then all the
objects over it seem to be properly segmented. Unfortunately,
the ground is not always planar, meaning that a brute-force
fitting may fail. Another approach is to classify the local
shapes that are planar, which yields accurate classification
of the points. However, this method costs too much time on
computing features for every point. In contrast, our method
uses the simple horizontal slicing to separate the ground and
then applies clustering based on Euclidean distance on each
layer, avoiding plane fitting and computation of features on
every point. The problem left is to reassemble the broken
parts while avoiding the interference of ground and nearby
objects. To this end, we propose a bucket augmentation
method, followed by a segmentation stage consisting of
ground trimming and disconnected component trimming.
Finally, in order to filter other objects that contain pole-like
structures, we introduce the validation process based on the
statistical pole descriptor and SVM-based classification.

II. RELATED WORK

Slicing-based Method. Several works use the slicing-
based method to deal with point cloud data for finding
vertical objects, in order to reduce the influence of structures
attached to the vertical trunk. Luo and Wang [2] use slicing
to detect pillars from a point cloud. Pu et al. [3] extend the
approach of Luo and Wang [2] and propose a percentile-
based method to detect the pole-like object. However, their
validation method is mainly based on the deviation of the
neighboring subparts, which is capable of dealing with pole-
like objects with attachments in the bottom or on the top
of the trunks, but not enough for pole-like objects with rich
attachments in the middle.

Cylindrical Shape-based Method. One of the earliest
work aiming at detecting poles from ranged laser data uses
Hough voting to detect circles [4]. Similar approaches have
been extensively applied in tree trunk detection [5]. However,
the circular characteristic for poles is obvious only for indoor
environments or close-range scans such as [2].

Segmentation. Due to the presence of ground and facades
that connect every objects in a huge cluster, a filtering and
segmentation step is usually needed. Yokoyama et al. [6]
assumed that the ground in the input data has been removed.
Golovinskiy et al. [7] used iterative plane fitting to remove
the ground, and a graph-cut-based method to separate the
foreground with the background. Tombari et al. [8] used
a RANSAC-like iterative algorithm to remove all planar

Fig. 1. Representative poles. From left to right are street lights, flags,
utility poles, signs, meters and traffic lights, respectively.

surfaces. We do not, however, rely on global plane fitting in
the pre-processing step. Instead, we do the ground trimming
after localization, which involves only a small section of the
ground.

Point Classification. The point classification is a standard
technique to analyze the composition of the point cloud.
For example, Lalonde et al. [9] used a Gaussian Mixture
Model (GMM) with Expectation Maximization algorithm to
learn a model of the three saliency features derived from the
eigenvalues of the local covariance matrix, i.e., linear, planar
and volumetric. Demantké et al. [10] proposed the dimen-
sionality features based on the same saliency features, which
are exhaustively computed at each point and scale. Behley et
al. [11] applied spectrally hashed logistic regression to fast
classify the points. Hadjiliadis and Stamos [12] proposed a
sequential online algorithm for classification between vegeta-
tion and non-vegetation and between vertical and horizontal
surfaces. Tombari et al.[8] proposed a histogram of scalar
products to classify the vertical pole points using SVM. Our
method is closest to that of Yokoyama et al. [6], but we make
a more delicate classification by distinguishing between wire
points and the general linear points.

Pole Classification. Surprisingly, despite the essential
trunk, the shapes of the poles are quite diverse. Figure 1
illustrates some representative poles. Most existing works
classify the poles according to their usage, shapes and even
height. Pu et al. [3] make a detailed classification on the
signs according to the planar shapes. However, they do not
distinguish between non-planar poles, e.g., lights and utility
poles. Golovinskiy et al. [7] make a mixed categorization
of usage and height, resulting in seven categories including
short post, lamp post, sign, light standard, traffic light, tall
post and parking meters, while the utility poles are not
reported. Yokohama et al. [6] classify the poles into three
categories including street lights, utility poles and signs. In
this paper, we follow the categorization of Yokohama et al.
[6] since these three categories represent the most common
usage of poles, while further classification depending on
height could be easily achieved.

III. SYSTEM OVERVIEW

The system pipeline for detection and classification is
illustrated in Figure 2. The input is a large-scale point cloud
of an urban area, and we output all possible candidates of the
pole-like objects and classify them into 3 basic categories,
i.e., street lights, utility poles and signs. Specifically, there
are three major stages of processing. The first stage is
localization, where all possible locations of pole-like objects
are extracted. In this stage, we make use of the unique char-

acteristic of pole-like objects, i.e., the local parts of the pole-
like objects are also pole-like when they are broken down.
The second stage is segmentation, in which the ground and
other disconnected components are trimmed at the candidate
locations. Finally, we compute the statistical attributes for
each candidate based on the extended distribution features
and classify the candidates with a support vector machine.
The classification step also help filters out other objects that
contain local pole-like structures such as trees, pedestrians
and part of buildings.

In the following sections, we will discuss each of these
stages in detail.

IV. CANDIDATE LOCALIZATION

We denote the set of pole-like object point clouds as P .
Given a scene point cloud Y , any object in it could be seen
as a subset of Y , our goal is to find the set of pole-like
objects PY = {Pi|Pi ⊂ Y ∧ Pi ∈ P, i = 1, 2, . . . , n}.

Each pole-like object Pi ∈ P could be divided into two
parts: a trunk Ti and the remaining points Ri. The trunk
Ti is what makes an object pole-like, while the remaining
points Ri can be used to tell what class of pole the object
belongs to. We define the location of a pole-like object as
the location of its stem.

We focus on the pole-like objects with vertical or near-
vertical trunks. If the original input is not well oriented, then
a rough ground fitting of the point cloud could be used to
generate the upright direction. In fact, most trunks of pole-
like objects should not be tilted too much regardless of the
terrain.

In the first step, we would like to find all possible locations
of pole-like objects. We employ a slicing strategy to obtain
a fast raw localization.

A. Point Cloud Slicing and Clustering

One of the important properties of the trunk in the real
scene point cloud is that, if it’s horizontally sliced, each of
its slices would still be a trunk-like segment.

We first slice the input cloud along the z (upright) direc-
tion. The height of each layer is H = 1 (unit: meter). The
slicing result is illustrated in Figure 3 (a).

For each slice, we perform the clustering algorithm based
on Euclidean distance to get a list of clusters. The clustering
result within each slice is illustrated in Figure 3 (b).

B. Pole Seed Generation

Given a horizontal slice of a pole-like object, there are two
obvious characteristics: first, the cross section is relatively
small; second, the length is long enough. Moreover, the
bounding box of a piece of trunk is very close to the
original shape. Therefore, we have the following two criteria
regarding the cross section area and the segment length
based on the bounding box property of each candidate cluster
(Equation 1): {

Lx × Ly < A

Lz ≥ κ ·H
(1)

Fig. 2. The pipeline of the proposed pole detection and classification system.

In Equation 1, we assume that the size of the bounding
box is Lx × Ly × Lz , A is the maximum area value of a
cross section that would be considered as a trunk, H is the
slicing height, and κ is the ratio coefficient of the length. We
empirically set A = 0.72 = 0.49, H = 1 and κ = 0.5. Figure
3 (c) highlights the segments satisfying the trunk criteria.

After all possible trunk segments are generated, we go
through them from lower layers to upper layers to check if
there is a trunk overlap. Two trunks are said to be overlapping
if and only if the bounding boxes of the two trunks projected
to the x − y plane have an overlap. Once a trunk overlap
is detected, the trunk segment in the upper layer would be
added to the trunk list of the lower segment. The lowest
trunk segments are considered as the seeds of the poles. This
process could extract most candidates even with occlusion,
if at least one segment of the trunk is not occluded.

C. Pole Bucket Augmentation

In order to extend the pole candidate from the trunks to
their attached structures, we perform the bucket augmen-
tation on the pole seeds. Specifically, the region within a
constant horizontal distance rb = 3 from the center of the
seed trunk segment is considered as the pole bucket, and all
points within this range would be appended to the candidate
pole cluster. It’s worth noting that, buckets generated by
different seeds could overlap and share the similar set of
points if the objects are close, but different objects could
still be detected independently via the successive steps using
the seed information.

V. CANDIDATE SEGMENTATION

While the bucket enhancing limit the range of the pole-like
object, the enclosed area does not necessarily belong to the
pole. These outliers could possibly be the ground, or points
from other objects.

A. Ground Trimming

In general, the lowest part of the pole is connected with
the cluster of the ground, so it’s necessary to trim the ground
from the cluster. The idea is that, we can extend the bottom
part of the pole as long as the number of points in the inner
circle is larger than the outer circle.

Specifically, we only consider the points below the seed
trunk, i.e., the ground-connected cluster Gi = {p ∈ Ci|zp <

(a) (b) (c) (d)

Fig. 4. Ground and disconnected region trimming process. (a) The original
bucket-augmented candidate. (b) The red part is the above-the-seed cluster,
while the blue part is the under-the-seed, or ground-connected cluster. (c)
When ground trimming is done, the bottom part of the pole is successfully
extended. (d) Finally, the disconnected components with respect to the seed
trunks are removed.

zm}, where zm = minq∈Ti
zq is the lower bound of the

z value of the seed trunk. Then, we attempt to extend the
bottom of the trunk at a step of δ = 0.2. In the k-th step,
we check if inequality (2) holds:

|{p ∈ Gik|rp < rinner}|
|{p ∈ Gik|rinner < rp < router}|

< λG (2)

where Gik is the sliced ground-connected cluster (Equa-
tion 3), the inner radius rinner = rb

4 = 0.75, the outer radius
router = 2rinner = 1.5, and λG = 0.5 is the trunk-ground
ratio. If the inequality holds, the points within the inner
radius will be added to the candidate cluster. The process
stops when inequality (2) is not satisfied.

Gik = {p ∈ Gi|zm − kδ ≤ zp < zm − (k − 1)δ}. (3)

B. Disconnected Region Trimming

To remove the other objects that lie within the range of
the bucket, we need to trim the disconnected components.
Specifically, we perform the region growing algorithm from
each of the seed trunks in the current candidate point cloud,
and filter out points that are unreachable. Figure 4 shows the
ground and disconnected region trimming process.

VI. POLE CLASSIFICATION

Since the enforced constraints are relatively weak in the
localization step so as to keep as many potential poles as

(a) (b) (c)

Fig. 3. The step-by-step results of candidate localization. (a) The sliced result. (b) The clustering result for each slice. (c) The segments satisfying the
pole criteria.

Fig. 5. Distribution of height of poles.

possible. As a side effect, many candidates are actually part
of buildings containing pole structures, trees with trunks, and
even pedestrians. Therefore, it’s necessary to validate them
again after segmentation. Meanwhile, most poles belong to
lights, utility poles and signs, we try to identify which of
these three categories the poles belong to at the same time. To
this end, we classify the pole candidates into four categories:
lights, utility poles, signs and others. The ones classified as
others would be removed from the pole detection result.

Before applying the classifier, we need to extract some
attributes from the candidates. The most straightforward at-
tribute about a pole candidate is the height h = zmax−zmin.
The height is meaningful because the pole-like objects we
would like to detect are man-made objects, thus have fixed
height for certain sub-categories. Figure 5 illustrates the
distribution of heights of poles from the manually labeled
ground truth. There are multiple peaks in different intervals,
which suggests a large number of poles of certain types are
present in the region.

A. Point Classification

The usage of a pole is highly dependent on its local shapes
or attachments, which could be simplified as linear, planar
and volumetric components. All pole-like candidates contain
a vertical linear trunk. Besides that, lights could contain
linear branches or volumetric bulbs, utility poles contain
linear wires, and signs contain planar components. These
components are further composed of local point-level patches
of the same property, so we just need to make a classification
on the neighborhood of each point. The traditional Principal
Component Analysis (PCA) is applied here.

Suppose that λ1 ≥ λ2 ≥ λ3 are the eigenvalues of the
variance-covariance matrix Mp (4):

Mp =
1

|Up|
∑
q∈Up

(q − q̄)(q − q̄)T , (4)

where Up is the set of points lying in the sphere of
rU = 0.5 centered at the point p, and q̄ is the barycenter
of Up. λ1 � λ2 ' λ3 would indicate there’s one principal
direction and the distribution is linear; λ1 ' λ2 � λ3
would indicate there are two principal directions and the
distribution is planar; λ1 ' λ2 ' λ3 would suggest that
there’s no obvious principal direction and the distribution is
thus volumetric.

There are multiple forms of determining which criterion
is satisfied [9], [10], [6]. We apply the form of distribution
features as in [6] (5):

S1 = λ1 − αλ2
S2 = λ2 − λ3
S3 = βλ3

(5)

Then, the dimensionality feature d = argmaxi∈{1,2,3}Si

is introduced to indicate which feature is the most significant.
Note that, although Definition (5) does not have a normaliza-
tion coefficient as in [10], this form is actually more general
because only the relative relationship among Si matters, and
the form in [10] corresponds to the case in which α = 1 and
β = 1.

In [6], the cluster has been smoothed using the endpoint
preserving Laplacian Smoothing in order to recognize linear
shapes of different radii. Therefore, very strict parameters
are applied for the smoothed data, i.e., α = 10 and β = 100.
However, we find that smoothing could cause problems in
case of sparse regions (Figure 6), and is time-consuming.

Moreover, without smoothing, a relaxed condition with
α = 4 and β = 2 is enough for recognizing most linear
shapes and different α could help distinguish the radii of
the them. This is particularly useful given the observation
that, different from the case in [6], street lights and utility
pole cannot be distinguished simply using the proportion of
linear points and volumetric points, because both categories
can have similar number of linear points. On the other hand,
what makes a pole to be a utility pole is that it carries wires.

(a) (b)

Fig. 6. Comparison of point classification result of a façade patch before
and after smoothing. (a) shows the classification result without smoothing,
in which most points are correctly classified as planar. However, the result
with smoothing (b) wrongly classify the planar points as linear points.

(a) (b) (c) (d) (e) (f)

Fig. 7. Point classification results on different objects. The meanings of
the colors are: blue - vertical linear, red - planar, black - volumetric, orange
- wire, green - other linear.

Therefore, the key is to distinguish the wire points from the
other linear points.

While the wire points are classified as linear points in
the distribution feature, two distinct properties of wires are
enforced: (1) the wires are thinner than other linear parts; (2)
the directions of the wires are typically horizontal. To judge
the first property, we evaluate a strict condition with α′ =
10, meaning that S′

1 could be larger than S2 and S3 only
if the linearity is significant enough. The second property
requires that principal direction be nearly horizontal, in other
words, the eigenvector ~v1 corresponding to λ1 is roughly
perpendicular to the upright direction (Equation 6, θw = 0.2).

S′
1 = λ1 − α′λ2 > S2, S3

| ~v1
||~v1||

· (0, 0, 1)| < θw
(6)

Similar to [6], the principal direction could be used to
distinguish the linear points lying on the vertical trunk by
applying the constraint (7) (θt = 0.8):

| ~v1
||~v1||

· (0, 0, 1)| > θt. (7)

Figure 7 shows the classification result of all five cate-
gories of points on different types of objects.

B. Pole Component Analysis

From Figure 7 we can qualitatively summarize the rela-
tionship between the object classes and the point classifica-

TABLE I
QUALITATIVE RELATIONSHIP BETWEEN THE CLASS OF OBJECT AND THE

CLASS OF POINT CLASSIFICATION.

Class Linear Planar VolumetricVertical Wire Others
Pole - Light + - -/+ - -/+
Pole - Utility + + -/+ - -/+
Pole - Sign + - -/+ + -

Others - Tree -/+ - - - ++
Others - Façade -/+ - - ++ -
Others - Others - -/+ -/+ -/+ -/+

tion in the following table (I):
In the table, ’-’ means the object category contains few

points of the corresponding class in the column, ’+’ means
the object category contains many points of the correspond-
ing class, ’-/+’ means the object category could contain few
or many points due to different subcategories (e.g. Figure
7(b) and 7(c)), while ’++’ means the object category contains
large number of points. We can see that, without the wire
class, it’s hard to distinguish between the lights and the utility
poles.

From table (I) we can infer some heuristic conditions
based on the number of points belonging to different classes
to do the classification. However, since the variance within a
category could be huge, it’s better to apply a learning-based
classifier.

In general, we have six attributes for any candidate cluster,
including the height h and the number of points in each of
the five categories. However, since some joint points on the
trunk could be classified as non-linear points, it’s better not
to count them in the statistics. Similar to the attached part
recognition in [6], we apply RANSAC to fit the vertical linear
points as trunk. The points lying within distance σ = 0.2 are
considered to be on the fitted line regardless of their class.
The process is continued until the number of unfitted vertical
linear points is smaller than 50. Another observation is that
the non-trunk features on the very bottom of the candidates
are typically unrelated (Figure 7). Therefore, we exclude the
non-trunk points on the lowest 0.1 × h part of the cluster.
Finally, we obtain a refined result for the number of points
in each class, i.e., the number of vertical linear points on the
fitted trunk n1, the number of wire points n2, the number of
other linear points n3, the number of planar points n4 and
the number of volumetric points n5. Note that n2, n3, n4 and
n5 exclude the points on the fitted trunk and the bottom part
of the cluster.

Finally, we normalize them by (8).

di =
ni
N
, i = 1, 2, 3, 4, 5. (8)

C. Classification by SVM

To classify and validate the poles, we train a 4-class Sup-
port Vector Machine (SVM) [13] based on the six attributes.
The 4 classes are lights, utility poles, signs and others (non-
poles). We use 10-fold validation and grid search for the best
C and γ. The training data contain 6 lights, 5 utility poles,
3 signs and 8 instances of non-poles including 4 trees, 3

TABLE II
STATISTICS OF LOCALIZATION.

Number of blocks 45
Number of slices 1287

Number of clusters 114102
Clusters with H > 0.3 79225
Clusters with A < 0.49 53080

Clusters fitting both criteria 30336
Localized candidates 2448

façade segments and 1 pedestrian. We find that even with
such a small group of training dataset, the classification result
outperforms the heuristic method. The results are presented
in Section VII.

VII. EXPERIMENTS

The scanned data used in our experiment cover a 700m×
700m area of Ottawa from the Wright State 100 dataset [7].
The provided data are merged from one airborne scanner and
four car-mounted TITAN scanners facing to the left, right,
ground and sky, respectively. The quality of the airborne and
TITAN data fusion is 0.05 meters.

We manually labeled 451 poles in the test region contain-
ing 45 100m × 100m blocks of data with over 70 million
points. Since many poles are ambiguous in the point cloud,
we verify the ground truth with Google Street View. Figure 1
shows a collection of representative poles. The most common
category is the light, followed by the sign and utility pole.

Table II shows the statistics for localization. The minimum
z value is 40.53 and the maximum z value is 125.76.
After slicing in each blocks, there are totally 1287 slices.
After clustering within each slice, there are totally 114102
clusters. If only height criterion is applied, there will be
79225 candidate clusters; while if only the area criterion is
enforced, there will be 53080 clusters left. 30336 clusters
pass both criteria, and after merging the segments, there are
2448 candidate locations.

The 2448 candidates locations are verified through the
validation based on the attributes and the SVM classifier, and
finally 470 instances are identified as one of the three pole
categories (lights, utility poles and signs). Table (III) shows
the evaluation of detection of the pole-like objects. Among
the 451 pole-like objects, 340 are successfully detected, with
a recall rate of 75%. There are 144 false alarms, most of
which are trees with small crowns, pedestrians, and sparse
building façades with pole-like structures. Table (IV) shows
the comparison of pole classification results between our
method and that of Yokoyama et al. [6]. Our method turns out
to be much better. There are various reasons that the method
of [6] fails in this dataset. First, their segmentation step does
not take the buildings into account; second, the variation
within one category, e.g., the lights are not considered; third,
the wires connecting almost all the utility poles make their
segmentation unsuccessful; fourth, the smoothing step brings
more noises than gains in this dataset; and finally, there
are many parameters that need to be tuned in their method,
therefore some of the parameters might not fit in this dataset.

TABLE III
EVALUATION OF THE POLE-LIKE OBJECT DETECTION.

Method Predicted Correct Precision Recall
Yokoyama et al. [6] 483 202 42% 45%

Proposed method 470 340 72% 75%

TABLE IV
EVALUATION OF THE POLE-LIKE OBJECT CLASSIFICATION.

Method Category Predicted Correct Precision Recall

[6]

Light 221 73 33% 33%
Utility 95 2 2% 5%
Sign 167 27 16% 25%

Summary 483 102 21% 27%

Proposed

Light 213 119 56% 63%
Utility 144 72 50% 68%
Sign 113 54 48% 68%

Summary 470 245 52% 65%

Our method, on the other hand, solve or partially solve the
above problems and thus get a superior performance in this
challenging dataset.

Figure 8 shows the pole detection and classification result
of the whole area and Figure 10 shows some close-ups. The
time complexity is generally linear to the number of points
in data in segmentation, and most computation needs to be
done only on the segmented candidates. The overall running
time is around 3 hours, which is fast and demonstrates the
feasibility of our method for large-scale urban data. Figure
9 shows the typical failure cases of our method: trees with
small crown could be easily confused with the lights with
many bulbs. This could possibly be solved by taking more
contextual information into account, which is part of our
future work.

VIII. CONCLUSION AND FUTURE WORK

In this work, we propose an efficient and easy-to-
implement algorithm for pole detection from the 3D scanned
point cloud of the urban area. We introduce a series of
slicing, combination and filtering strategies, and propose a
five-class point classification method to help validate as well

Fig. 8. Pole detection and classification result of the whole area.

(a) (b)

Fig. 9. Typical failure cases of our method. The left is a false alarm due
to the sparsity of the tree, while the right is a false negative caused by a
light with many bulbs.

as classify the poles. There are some possible improvements
in the future work. For example, a plane removal step could
be incorporated in pre-processing. Moreover, as indicated in
the failure case analysis, the contextual information could be
beneficial for figuring out the outliers. Also, we are working
on a pole classification method that can further classify the
poles into more detailed subcategories.

REFERENCES

[1] P. Doubek, M. Perdoch, J. Matas, and J. Sochman, “Mobile mapping
of vertical traffic infrastructure,” in Proceedings of the 13th Computer
Vision Winter Workshop, pp. 115–122, 2008.

[2] D.-a. Luo and Y.-m. Wang, “Rapid extracting pillars by slicing point
clouds,” in Proc. XXI ISPRS Congress, IAPRS, vol. 37, pp. 215–218,
Citeseer, 2008.

[3] S. Pu, M. Rutzinger, G. Vosselman, and S. Oude Elberink, “Rec-
ognizing basic structures from mobile laser scanning data for road
inventory studies,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 66, no. 6, pp. S28–S39, 2011.

[4] P. Press and D. Austin, “Approaches to pole detection using ranged
laser data,” in Proceedings of Australasian Conference on Robotics
and Automation, Citeseer, 2004.

[5] T. Aschoff and H. Spiecker, “Algorithms for the automatic detection of
trees in laser scanner data,” International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 36, no. Part 8,
p. W2, 2004.

[6] H. Yokoyama, H. Date, S. Kanai, and H. Takeda, “Detection and
classification of pole-like objects from mobile laser scanning data
of urban environments,” International Journal of CAD/CAM, vol. 13,
no. 2, 2013.

[7] A. Golovinskiy, V. G. Kim, and T. Funkhouser, “Shape-based recog-
nition of 3d point clouds in urban environments,” in Computer Vision,
2009 IEEE 12th International Conference on, pp. 2154–2161, IEEE,
2009.

[8] F. Tombari, N. Fioraio, T. Cavallari, S. Salti, A. Petrelli, and L. Di Ste-
fano, “Automatic detection of pole-like structures in 3d urban en-
vironments,” in Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pp. 4922–4929, IEEE, 2014.

[9] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural
terrain classification using three-dimensional ladar data for ground
robot mobility,” Journal of field robotics, vol. 23, no. 10, pp. 839–
861, 2006.

[10] J. Demantké, C. Mallet, N. David, and B. Vallet, “Dimensionality
based scale selection in 3d lidar point clouds,” International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
Laser Scanning, 2011.

[11] J. Behley, K. Kersting, D. Schulz, V. Steinhage, and A. B. Cremers,
“Learning to hash logistic regression for fast 3d scan point classi-
fication,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pp. 5960–5965, IEEE, 2010.

[12] O. Hadjiliadis and I. Stamos, “Sequential classification in point clouds
of urban scenes,” in Proc. 3DPVT, 2010.

[13] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.

(a)

(b)

(c)

(d)

Fig. 10. Close-ups of pole detection and classification result by our method.
We use yellow color to denote the lights, blue color to denote utility poles
and red color to denote signs.

	Introduction
	Related Work
	System Overview
	Candidate Localization
	Point Cloud Slicing and Clustering
	Pole Seed Generation
	Pole Bucket Augmentation

	Candidate Segmentation
	Ground Trimming
	Disconnected Region Trimming

	Pole Classification
	Point Classification
	Pole Component Analysis
	Classification by SVM

	Experiments
	Conclusion and Future Work
	References

